Module Catalogue

Master’s Programme: Data Science

(Master of Science, M.Sc.)

(120 ECTS credits)

Based on the Prüfungs- und Studienordnung of 18 July 2017

88/533/--/M0/H/2016

Issued on 12 September 2022
Index

Abbreviations and annotations..3
Module: P 1 Inference and Sampling (Core Module Statistics)...4
Module: P 2 Knowledge Discovery and Big Data Management (Core Module Informatics).........6
Module: P 3 Advanced Statistical Modelling and Programming ..8
Module: P 4 Multivariate Statistics and Database Management..10
Module: P 5 Human Computation and Visual Analytics...12
Module: P 6 Predictive Modelling..14
Module: P 7 Data Ethics and Data Security..16
Module: WP 1 Selected Topics in Statistics ..18
Module: WP 2 Selected Topics in Informatics..20
Module: WP 3 Theory of Selected Methods in Data Science...22
Module: P 8 Data Science Practical (Practical Module)...24
Module: P 9 Current Research in Data Science..26
Module: WP 4 Selected Topics in Data Science...28
Module: WP 5 Applications of Selected Methods in Data Science..30
Module: P 10 Finale Module...32
Abbreviations and annotations

CP credit points, ECTS credits
ECTS European Credit Transfer and Accumulation System
h hours
SoSe summer semester
SWS contact hours
WiSe winter semester
WP compulsory elective course/module
P mandatory course/module

1. The ECTS credits assigned in the module catalogue are designated as follows: credit points not listed in parentheses are awarded when the relevant examination of the module or module parts has/have been completed successfully. Credit points in parentheses are listed for calculation purposes only.

2. The semester, in which a module should be taken, can either be mandatory or considered a recommendation, depending on the information in Anlage 2 of the Prüfungs- und Studienordnung of your degree programme. In this module catalogue, the options are indicated as “scheduled semester” or “recommended semester”.

3. Please note: The module catalogue is for orientation purposes only while the provisions of the Prüfungs- und Studienordnung of your degree programme in the current version (in German only) are legally binding. See www.lmu.de/studienangebot and select your degree programme.
Module: P 1 Inference and Sampling (Core Module Statistics)

Programme
Master’s Programme: Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>P 1.1 Statistical Reasoning and Inference (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 1.2 Statistical Reasoning and Inference (Tutorial)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
<tr>
<td>Lecture</td>
<td>P 1.3 Sampling and Experimental Design (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 1.4 Sampling and Experimental Design (Tutorial)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 12 ECTS credits have to be acquired. Class attendance averages about 8 contact hours. Including time for self-study, 360 hours have to be invested.

Module type
Mandatory module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
None

Entry requirements
None

Semester
Scheduled semesters: 1 and 2

Duration
The completion of the module takes 2 semesters.

Content
The module Inference and Sampling (Core Module Statistics) covers fundamental statistical concepts and methods and consists of two courses, which each comprise a lecture accompanied by a tutorial.

The first course, Statistical Reasoning and Inference, comprises (i) traditional and modern methods of statistical inference (maximum likelihood, composite likelihood, multiple testing, false discovery rate, etc.) and (ii) Bayesian approaches including computer intensive Markov-Chain-Monte-Carlo (MCMC) methods. The lecture is accompanied by a tutorial, in which the content of the lecture will be consolidated and numerical tools such as R will be applied.

In the second course, Sampling and Experimental Design, fundamental ideas of sampling, bootstrapping, model selection, missing data, multivariate models and experimental design are introduced. A second focus of the lecture is on the analysis of “observational data” and related problems of potential biases. Finally, fundamental concepts
and ideas of experimental design will be introduced. The lecture is accompanied by a tutorial.

<table>
<thead>
<tr>
<th>Learning outcomes</th>
<th>Students learn fundamental concepts of statistical inference. They are able to use these concepts with new data and draw samples from complex data, and they know how to design experiments in order to draw conclusions from the data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of examination</td>
<td>Written examination (120-180 minutes) or oral examination (30-45 minutes). In the summer semester 2023 an oral exam is planned.</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Prof. Dr. Göran Kauermann</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>The course follows the book Kauermann, Küchenhoff, Heumann (2021), Statistical Reasoning and Inference – for Data Science, Springer.</td>
</tr>
</tbody>
</table>
Module: P 2 Knowledge Discovery and Big Data Management (Core Module Informatics)

Programme: Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>P 2.1 Knowledge Discovery and Data Mining (Lecture)</td>
<td>WiSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 2.2 Knowledge Discovery and Data Mining (Tutorial)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
<tr>
<td>Lecture</td>
<td>P 2.3 Big Data Management (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 2.4 Big Data Management (Tutorial)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 12 ECTS credits have to be acquired. Class attendance averages about 8 contact hours. Including time for self-study, 360 hours have to be invested.

Module type: Mandatory module with mandatory courses

Usability of the module in other programmes: None

Elective guidelines: None

Entry requirements: None

Semester: Scheduled semesters: 1 and 2

Duration: The completion of the module takes 2 semesters.

Content: The module Knowledge Discovery and Big Data Management (Core Module Informatics) covers all tasks within each step of the knowledge discovery process and consists of two courses, which each comprise a lecture accompanied by a tutorial.

The first course, Knowledge Discovery and Data Mining, introduces feature representations and similarity measures as core concepts of data analysis. Based on these concepts, the course covers various methods from the area of data mining and pattern extraction (e.g. lazy learning, density-based clustering, k-medoid clustering, local outlier factor, a-priori algorithm, FP-growth, frequent subsequence mining).

The second course, Big Data Management, focuses on the implementation of analysis methods and information systems for large, complex, and volatile data sets. First, modern data processing frameworks are presented that are used for managing, processing, and distributing data in data science.
applications. These systems include batch processing (e.g. Hadoop, Spark), streaming systems (e.g. Storm, Flink), and NoSQL database systems (e.g. MongoDB, Cassandra). In addition, the course introduces data mining and machine learning techniques for large, heterogeneous and volatile data sets.

Learning outcomes

Students get an overview of the data analysis process as a whole as well as the individual tasks within this process and the different methods available to handle these tasks. They learn central techniques of data mining and pattern extraction and will be able to manage analysis processes by using suitable data management systems. This includes not only being able to use specific methods in a given system, but also being able to choose suitable methods and systems.

Type of examination

Written examination (120-180 minutes) or oral examination (30-45 minutes).

In the summer semester 2023 an oral exam is planned.

Type of assessment

The successful completion of the module will be graded.

Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact

Prof. Dr. Matthias Schubert

Language(s)

English

Additional information

None
Module: P 3 Advanced Statistical Modelling and Programming

Programme
Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colloquium</td>
<td>P 3.1 Advanced Statistical Modelling and Programming (Colloquium)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>105 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 3.2 Advanced Statistical Modelling and Programming (Tutorial)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Mandatory module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
None

Entry requirements
None

Semester
Scheduled semester: 1

Duration
The completion of the module takes 1 semester.

Content
This module comprises a variety of courses in advanced methods of statistics and computer science: advanced statistical modelling, multivariate statistics, algorithm design, and system development.

Learning outcomes
At the end of this module, all students will be on a homogeneous level of expertise in advanced methods in both statistics and computer science.

Type of examination
Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact
Prof. Dr. Göran Kauermann / Prof. Dr. Thomas Seidl
<table>
<thead>
<tr>
<th>Language(s)</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 4 Multivariate Statistics and Database Management

Programme
Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colloquium</td>
<td>P 4.1 Multivariate Statistics and Database Management (Colloquium)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>105 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 4.2 Multivariate Statistics and Database Management (Tutorial)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Mandatory module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
None

Entry requirements
None

Semester
Scheduled semester: 1

Duration
The completion of the module takes 1 semester.

Content
This module comprises a variety of courses in advanced methods of statistics and computer science: advanced statistical modelling, multivariate statistics, algorithm design, and system development.

Learning outcomes
At the end of the module students will be on a homogeneous level of expertise in advanced methods in both statistics and computer science.

Type of examination
Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.

Responsible contact
Prof. Dr. Göran Kauermann / Prof. Dr. Thomas Seidl
Module: P 5 Human Computation and Visual Analytics

Programme
Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>P 5.1 Human Computation and Visual Analytics (Lecture)</td>
<td>WiSe</td>
<td>30 h (2 SWS)</td>
<td>30 h</td>
<td>(2)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 5.2 Human Computation and Visual Analytics (Tutorial)</td>
<td>WiSe</td>
<td>30 h (2 SWS)</td>
<td>90 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Practical project</td>
<td>P 5.3 Project in Human Computation and Visual Analytics</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 5 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Mandatory module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
None

Entry requirements
None

Semester
Recommended semesters: 1 and 2

Duration
The completion of the module takes 2 semester(s).

Content
The module Human Computation and Visual Analytics covers those aspects of data science, in which humans either produce data, and process and analyse it with the help of algorithms, or in which data are presented to humans by a computer system. In the area of Human-Computer Interaction (HCI), the basics of human perception and cognition are introduced as well as some approaches for the design of usable systems. The lecture part on Visual Analytics (VA) covers the visual analysis of data by the human user as well as some visualization techniques. The lecture part on Human Computation (HC) gives an introduction to distributed data collection by humans (crowdsourcing), and the processing of data by humans, for example in the form of online games (HC). The tutorial includes lab sessions, in which students develop their own concepts based on what they have learned in the lecture. In the practical part, students will implement their own concepts for HC/VA systems in the form of a working prototype.

Learning outcomes
Students will learn to understand that the human user is an
integral part of the chain of collecting data, processing data and evaluating data. At the same time students will develop a consciousness for the effects of data science on the individual person as well as on society as a whole. At a technical level, students will understand and practically explore how to design and develop systems that involve the user either as a source, processor or recipient of data.

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Oral presentation (30-60 minutes) and written assignment (15-30 pp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Prof. Dr. Andreas Butz</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 6 Predictive Modelling

Programme

Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>P 6.1 Predictive Modelling (Lecture)</td>
<td>SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 6.2 Predictive Modelling (Tutorial)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Mandatory module with mandatory courses

Usability of the module in other programmes

None

Elective guidelines

None

Entry requirements

It is recommended that students have successfully completed the mandatory modules P3 and P4 before taking this module.

Semester

Recommended semester: 2

Duration

The completion of the module takes 1 semester.

Content

Predictive Modelling, in particular by means of non-linear, non-parametric methods, has become a central part of modern data analysis both in computer science and statistics in order to uncover complex patterns and relationships in data. The module covers models such as decision trees, support vector machines, and ensembles (random forest, bagging, boosting) and concludes with advanced techniques regarding model selection, feature selection, and hyperparameter optimization.

Learning outcomes

Students acquire theoretical as well as practical competences regarding the most important models of learning from data. The students should be able to conduct a data analysis project themselves, including understanding and interpreting the data, in order to critically judge advantages and disadvantages of the different methods. The accompanying tutorial covers a mix of theoretical and practical assignments. The latter will be conducted in R and will cover all methods introduced during the lecture.

Type of examination

Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)
In the summer semester 2023 a written exam is planned.

<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>The successful completion of the module will be graded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Prof. Dr. Bernd Bischl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 7 Data Ethics and Data Security

Programme
Master’s Programme: Data Science (Master of Science, M.Sc.)

<table>
<thead>
<tr>
<th>Related module parts</th>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lecture</td>
<td>P 7.1 Data Security and Data Anonymization (Lecture)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td>P 7.2 Data Security and Data Anonymization (Tutorial)</td>
<td>SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>Lecture</td>
<td>P 7.3 Data Ethics</td>
<td>WiSe</td>
<td>30 h (2 SWS)</td>
<td>60 h</td>
<td>(3)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

<table>
<thead>
<tr>
<th>Module type</th>
<th>Mandatory module with mandatory courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability of the module in other programmes</td>
<td>None</td>
</tr>
<tr>
<td>Elective guidelines</td>
<td>None</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>None</td>
</tr>
<tr>
<td>Semester</td>
<td>Recommended semesters: 2 and 3</td>
</tr>
<tr>
<td>Duration</td>
<td>The completion of the module takes 2 semesters.</td>
</tr>
<tr>
<td>Content</td>
<td>The module Data Ethics and Data Security covers basic legal and ethical questions and challenges of data security and privacy. The module comprises two courses. The first course consists of a lecture and a tutorial. The lecture introduces the foundations of data security and privacy as well as methodological and technical solutions in cryptography and data anonymisation. In the following tutorial, students learn to apply the contents of the lecture in micro-project. The second course is a seminar with introductory talks on technical, legal, and ethical aspects of data security and privacy – especially when dealing with personal data or when planning experiments in data science – and students’ presentations of their research on individual topics that address these issues.</td>
</tr>
<tr>
<td>Learning outcomes</td>
<td>Students will reflect on standard procedures and problems of data protection and learn technical methods to handle data responsibly.</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)</td>
</tr>
</tbody>
</table>
In the summer semester 2023 a written exam is planned.

<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>The successful completion of the module will be graded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Prof. Dr. Dieter Kranzlmüller</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 1 Selected Topics in Statistics

Programme
Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (compulsory elective)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 1.1 Selected Topics in Statistics (Lecture)</td>
<td>WiSe and SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>WP 1.2 Selected Topics in Statistics (Tutorial)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type
Compulsory elective module with elective courses

Usability of the module in other programmes
None

Elective guidelines
This module can be chosen in compliance with the following rules: In the compulsory elective modules WP 1 – WP 5, students have to take elective courses with a total of 12 ECTS credits.

Entry requirements
Students can find information about admission requirements in the LSF/moodle. They may also approach the Data Science program coordinator before choosing courses.

Semester
Recommended semester: 2 or 3

Duration
The completion of the module takes 1 semester.

Content
In the compulsory elective module WP 1, students may choose courses in specialized fields in statistics from the regularly offered master level courses. This includes courses at the partner universities TU Munich and University of Augsburg.

Learning outcomes
Students acquire theoretical and practical knowledge and skills in selected topics in statistics.

Type of examination
Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)

Type of assessment
The successful completion of the module will be graded.

Requirements for the gain of ECTS credits
ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.
<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Prof. Dr. Göran Kauermann / Prof. Dr. Andreas Butz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 2 Selected Topics in Informatics

Programme

Master’s Programme: Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (compulsory elective)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 2.1 Selected Topics in Informatics (Lecture)</td>
<td>WiSe and SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>WP 2.2 Selected Topics in Informatics (Tutorial)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with elective courses

Usability of the module in other programmes

None

Elective guidelines

This module can be chosen in compliance with the following rules: In the compulsory elective modules WP 1 – WP 5, students have to take elective courses with a total of 12 ECTS credits.

Entry requirements

Students can find information about admission requirements in the LSF/moodle. They may also approach the Data Science program coordinator before choosing courses.

Semester

Recommended semester: 2 or 3

Duration

The completion of the module takes 1 semester.

Content

In the compulsory elective module WP 2, students may choose courses in specialized fields in informatics from the regularly offered master level courses. This includes courses at the partner universities TU Munich and University of Augsburg.

Learning outcomes

Students acquire theoretical and practical knowledge and skills in selected topics in informatics.

Type of examination

Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)

Type of assessment

The successful completion of the module will be graded.

Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly
compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Prof. Dr. Göran Kauermann / Prof. Dr. Andreas Butz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 3 Theory of Selected Methods in Data Science

Programme

Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (compulsory elective)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 3.1 Theory of Selected Methods in Data Science (Lecture)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>WP 3.2 Theory of Selected Methods in Data Science (Tutorial)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type

Compulsory elective module with elective courses

Usability of the module in other programmes

None

Elective guidelines

This module can be chosen in compliance with the following rules: In the compulsory elective modules WP 1 – WP 5, students have to take elective courses with a total of 12 ECTS credits.

Entry requirements

Students can find information about admission requirements in the LSF/moodle. They may also approach the Data Science program coordinator before choosing courses.

Semester

Recommended semester: 2 or 3

Duration

The completion of the module takes 1 semester.

Content

In the compulsory elective module WP 3, students may choose courses in the field of data science with a focus on the theory of selected methods in data science. This includes courses at the partner universities TU Munich and University of Augsburg.

Learning outcomes

Students acquire theoretical knowledge on selected methods in data science.

Type of examination

Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)

Type of assessment

The successful completion of the module will be graded.

Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory
and possibly compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Prof. Dr. Göran Kauermann / Prof. Dr. Andreas Butz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 8 Data Science Practical (Practical Module)

Programme
Master’s Programme: Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>P 8.1 Presenting Analyses in Data Science (Lecture)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>P 8.2 Presenting Analyses in Data Science (Tutorial)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
<tr>
<td>Practical project</td>
<td>P 8.3 Applied Data Science</td>
<td>WiSe and SoSe</td>
<td>30 h (2 SWS)</td>
<td>240 h</td>
<td>(9)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 12 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 360 hours have to be invested.

Module type
Mandatory module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
None

Entry requirements
It is recommended that students have successfully completed the mandatory modules P1 and P2 before taking this module.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
The module Data Science Practical (Practical Module) plays a central role in the curriculum of the master program. Practical experience with data-analytic methods, which are taught in the core modules and the compulsory elective modules, is essential in order to generate knowledge from data. Students will work on practical problems in the field of data science. The problems are typically concrete projects provided by business and industry partners. The students will tackle methodological challenges in the analysis of massive data; they will also learn to communicate the results and findings to the client. In the accompanying lecture and tutorial, the data and the methodologies used for the projects are discussed.

Learning outcomes
Students learn to work in teams with large datasets.
<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Oral presentation of results (45-75 minutes) and written report (30-40 pp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Prof. Dr. Göran Kauermann / Prof. Dr. Matthias Schubert</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 9 Current Research in Data Science

Programme
Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (mandatory)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>P 9.1 Current Research in Data Science (Seminar)</td>
<td>WiSe and SoSe</td>
<td>30 h (2 SWS)</td>
<td>150 h</td>
<td>(6)</td>
</tr>
<tr>
<td>Colloquium</td>
<td>P 9.2 Data Science Workshops</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>75 h</td>
<td>(3)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 9 ECTS credits have to be acquired. Class attendance averages about 3 contact hours. Including time for self-study, 270 hours have to be invested.

Module type
Mandatory module with mandatory courses

Usability of the module in other programmes
None

Elective guidelines
None

Entry requirements
It is recommended that students have successfully completed the mandatory modules P1 and P2 before taking this module.

Semester
Recommended semester: 3

Duration
The completion of the module takes 1 semester.

Content
In the seminar, an overview of current publications and new methodologies will provide insights into the field of data science. New developments will also be presented and discussed in the Data Science Workshops, e.g. the summer schools (Colloquium).

Learning outcomes
Students will deepen their skills of working with scientific publications and will learn to present newly acquired scientific knowledge. The Data Science Workshops, e.g. summer schools (Colloquium) will provide students with the opportunity to meet international experts in various specialised areas within the field of data science both from the academic world and from business and industry.

Type of examination
Oral presentation (30-60 minutes) and written assignment (15-30 pp.)

Type of assessment
The successful completion of the module will be graded.
<table>
<thead>
<tr>
<th>Requirements for the gain of ECTS credits</th>
<th>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible contact</td>
<td>Prof. Dr. Volker Schmid</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 4 Selected Topics in Data Science

Programme

Master’s Programme: Data Science
(Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (compulsory elective)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 4.1 Selected Topics in Data Science (Lecture)</td>
<td>WiSe and SoSe</td>
<td>45 h (3 SWS)</td>
<td>75 h</td>
<td>(4)</td>
</tr>
<tr>
<td>Tutorial</td>
<td>WP 4.2 Selected Topics in Data Science (Tutorial)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 6 ECTS credits have to be acquired. Class attendance averages about 4 contact hours. Including time for self-study, 180 hours have to be invested.

Module type

Compulsory elective module with elective courses

Usability of the module in other programmes

None

Elective guidelines

This module can be chosen in compliance with the following rules: In the compulsory elective modules WP 1 – WP 5, students have to take elective courses with a total of 12 ECTS credits.

Entry requirements

Students can find information about admission requirements in the LSF/moodle. They may also approach the Data Science program coordinator before choosing courses.

Semester

Recommended semester: 2 or 3

Duration

The completion of the module takes 1 semester.

Content

In the compulsory elective module WP 4, students may choose courses in specialized fields in data science. This includes courses at the partner universities TU Munich and University of Augsburg.

Learning outcomes

Students acquire theoretical and practical knowledge and skills in selected topics in data science.

Type of examination

Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)

Type of assessment

The successful completion of the module will be graded.

Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.
<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Prof. Dr. Göran Kauermann / Prof. Dr. Andreas Butz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: WP 5 Applications of Selected Methods in Data Science

Programme: Master’s Programme: Data Science (Master of Science, M.Sc.)

Related module parts

<table>
<thead>
<tr>
<th>Course type</th>
<th>Course (compulsory elective)</th>
<th>Rotation</th>
<th>Contact hours</th>
<th>Self-study hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WP 5.1 Applications of Selected Methods in Data Science (Lecture)</td>
<td>WiSe</td>
<td>15 h (1 SWS)</td>
<td>15 h</td>
<td>(1)</td>
</tr>
<tr>
<td>Practical project</td>
<td>WP 5.2 Applications of Selected Methods in Data Science (Practical project)</td>
<td>WiSe and SoSe</td>
<td>15 h (1 SWS)</td>
<td>45 h</td>
<td>(2)</td>
</tr>
</tbody>
</table>

For successful completion of the module, 3 ECTS credits have to be acquired. Class attendance averages about 2 contact hours. Including time for self-study, 90 hours have to be invested.

Module type

Compulsory elective module with elective courses

Usability of the module in other programmes

None

Elective guidelines

This module can be chosen in compliance with the following rules: In the compulsory elective modules WP 1 – WP 5, students have to take elective courses with a total of 12 ECTS credits.

Entry requirements

Students can find information about admission requirements in the LSF/moodle. They may also approach the Data Science program coordinator before choosing courses.

Semester

Recommended semester: 2 or 3

Duration

The completion of the module takes 1 semester.

Content

In the compulsory elective module WP 5, students may choose courses in the field of data science with a focus on the application of selected methods in data science. This includes courses at the partner universities TU Munich and University of Augsburg.

Learning outcomes

Students acquire practical knowledge and skills in applications of selected methods in data science.

Type of examination

Written examination (60-90 minutes) or oral examination (15-20 minutes) or written assignment (15-30 pp.)

Type of assessment

The successful completion of the module will be graded.

Requirements for the gain of ECTS credits

ECTS credits will be granted when the module examination (or the examination of relevant mandatory
and possibly compulsory elective module parts) has/have been completed successfully.

<table>
<thead>
<tr>
<th>Responsible contact</th>
<th>Prof. Dr. Göran Kauermann / Prof. Dr. Andreas Butz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
<tr>
<td>Additional information</td>
<td>None</td>
</tr>
</tbody>
</table>
Module: P 10 Finale Module

Programme
Master’s Programme: Data Science
(Master of Science, M.Sc.)

<table>
<thead>
<tr>
<th>Related module parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
</tr>
<tr>
<td>Thesis</td>
</tr>
<tr>
<td>Disputation</td>
</tr>
</tbody>
</table>

For successful completion of the module, 30 ECTS credits have to be acquired. Including time for self-study, 900 hours have to be invested.

<table>
<thead>
<tr>
<th>Module type</th>
<th>Mandatory module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability of the module in other programmes</td>
<td>None</td>
</tr>
<tr>
<td>Elective guidelines</td>
<td>None</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>It is recommended that students have successfully completed all mandatory and compulsory elective modules before taking this module.</td>
</tr>
<tr>
<td>Semester</td>
<td>Recommended semester: 4</td>
</tr>
<tr>
<td>Duration</td>
<td>The completion of the module takes 1 semester.</td>
</tr>
<tr>
<td>Content</td>
<td>The master’s thesis concludes the study program. The thesis may be either research-orientated or stimulated by a practical problem. The thesis will be defended in a disputation.</td>
</tr>
<tr>
<td>Learning outcomes</td>
<td>Consolidation of acquired knowledge; independent scientific study.</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Master’s thesis (50-100 pp.) and disputation (40 minutes)</td>
</tr>
<tr>
<td>Type of assessment</td>
<td>The successful completion of the module will be graded.</td>
</tr>
<tr>
<td>Requirements for the gain of ECTS credits</td>
<td>ECTS credits will be granted when the module examination (or the examination of relevant mandatory and possibly compulsory elective module parts) has/have been completed successfully.</td>
</tr>
<tr>
<td>Responsible contact</td>
<td>Prof. Dr. Göran Kauermann / Prof. Dr. Thomas Seidl</td>
</tr>
<tr>
<td>Language(s)</td>
<td>English</td>
</tr>
</tbody>
</table>
Additional information

None